20 research outputs found

    Transformation of Robotics Education in the Era of Covid-19: Challenges and Opportunities

    Get PDF
    The COVID-19 pandemic has significantly impacted many aspects of our social and professional life. To this end, Higher Education institutions reacted rather vastly to this unpreceded situation although many issues have been reported in the international literature since the emergence of the first global lockdown. As we are now transitioning back to the ‘normality’, universities and businesses consider the so-called ‘blended’ or ‘hybrid’ model as a means of facilitating the transition phase. In view of this decision, several studies can be identified wherein blended learning scenarios are proposed and described. The present work constitutes such an effort. Precisely, while adjusting the lens to the didactic of Robotics courses, we propose a blended learning model via which the laboratory activities are performed without the physical presence of the students in the physical context. The aforementioned objective is attained under the aid of the Virtual Reality technology coupled with the Digital Twin model. We hope that the ideas presented in this manuscript will motivate and inspire more researchers, instructional designers, and educators to consider the adoption of such alternative instructional techniques to mitigate the shortcomings that the remote education setting brings and further to improve the overall learning experience

    Microwave synthesis, characterization and perspectives of wood pencil-derived carbon

    Get PDF
    More than 14 billion pencils are manufactured and used globally every year. On average, a pencil is discarded after 60% of its original length has been depleted. In the present work we propose a simple and affordable way of converting this non-neglectable amount of waste into added value carbon product. In particular, we demonstrate the microwave synthesis of carbon from the wood pencil with and without chemical activation. This could be a process stage before the final recycling of the expensive graphite core. In the latter case, irradiation of the wood pencil in a domestic microwave oven heats up the pencil's graphite core, thus inducing carbonization of its wood casing. The carbonized product consists of amorphous carbon nanosheets having relatively low surface area. However, if the wood pencil is soaked in 50% KOH aqueous solution prior to microwave irradiation, a significantly higher surface area of carbon is obtained, consisting of irregular-shaped porous particles. Consequently, the obtained carbon can easily decolorize a methylene blue aqueous solution, can be used to make pocket warmers or gunpowder, and lastly, serves as an excellent adsorbent towards Cr(VI) removal from water, showing a maximum adsorption capacity of 70-75 mg/g within 24 h at 23 degrees C, pH = 3.Web of Science121art. no. 41

    10th IFAC Conference on Manufacturing Modelling, Management and Control MIM 2022

    No full text
    The COVID-19 pandemic has significantly impacted many aspects of our social and professional life. To this end, Higher Education institutions reacted rather vastly to this unpreceded situation although many issues have been reported in the international literature since the emergence of the first global lockdown. As we are now transitioning back to the 'normality', universities and businesses consider the so-called 'blended' or 'hybrid' model as a means of facilitating the transition phase. In view of this decision, several studies can be identified wherein blended learning scenarios are proposed and described. The present work constitutes such an effort. Precisely, while adjusting the lens to the didactic of Robotics courses, we propose a blended learning model via which the laboratory activities are performed without the physical presence of the students in the physical context. The aforementioned objective is attained under the aid of the Virtual Reality technology coupled with the Digital Twin model. We hope that the ideas presented in this manuscript will motivate and inspire more researchers, instructional designers, and educators to consider the adoption of such alternative instructional techniques to mitigate the shortcomings that the remote education setting brings and further to improve the overall learning experience. Copyright (C) 2022 The Authors

    Synthesis of a Novel Chitosan/Basil Oil Blend and Development of Novel Low Density Poly Ethylene/Chitosan/Basil Oil Active Packaging Films Following a Melt-Extrusion Process for Enhancing Chicken Breast Fillets Shelf-Life

    No full text
    An innovative process for the adsorption of the hydrophobic Basil-Oil (BO) into the hydrophilic food byproduct chitosan (CS) and the development of an advanced low-density polyethylene/chitosan/basil-oil (LDPE/CS_BO) active packaging film was investigated in this work. The idea of this study was the use of the BO as both a bioactive agent and a compatibilizer. The CS was modified to a CS_BO hydrophobic blend via a green evaporation/adsorption process. This blend was incorporated directly in the LDPE to produce films with advanced properties. All the obtained composite films exhibited improved packaging properties. The film with 10% CS_BO content exhibited the best packaging properties, i.e., 33.0% higher tensile stress, 31.0% higher water barrier, 54.3% higher oxygen barrier, and 12.3% higher antioxidant activity values compared to the corresponding values of the LDPE films. The lipid oxidation values of chicken breast fillets which were packaged under vacuum using this film were measured after seven and after fourteen days of storage. These values were found to be lower by around 41% and 45%, respectively, compared with the corresponding lipid oxidation values of pure LDPE film
    corecore